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Abstract 

A new method is suggested for pattern recognition of particle tracks based on a combined approach of both artificial 
neural network (ANN) and principal component analysis (PCA). It is seen that in high multiplicity environment, neither 
the PCA nor the ANN method is satisfactory when used separately as a track classifier. Best performance is achieved 
when the data are preprocessed using PCA technique, before it is fed to the backpropagated neural network. 0 1998 
Elsevier Science B.V. All rights reserved. 

1. Introduction 

Pattern recognition and track reconstruction is 
one of the important aspects in the detectors used 
in high energy heavy ion experiments. When the 
track multiplicities are high and the detectors are 
placed in the inhomogeneous magnetic fields, the 
track finding algorithm becomes very complex. In 
many situations, the tracks might also suffer mul- 
tiple scattering. It is, therefore, essential to develop 
some efficient algorithm taking into account the 
detector geometry, the inhomogeneity of the mag- 
netic field surrounding the detectors, multiple scat- 
tering and so on. In this work, we have tried to find 
out a track finding technique that will be well 
suited in tracking environments where one expects 
large track multiplicities, particularly in case of 
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relativistic heavy ion collisions. We apply the 
methods to the muon tracking system of the 
PHENIX detector, which is being designed [1,2] 
for experiments with the Relativistic Heavy Ion 
Collider at BNL. The main purpose of the 
PHENIX muon arm detector is to detect muon 
pairs with high mass resolution originating from 
the vector meson decays or virtual photon produc- 
tion. Therefore, a highly efficient pattern recogni- 
tion technique is desirable as the momentum or the 
mass resolution of the muon pairs will depend on 
how well the tracks are identified from the set of 
measured co-ordinates. We generate simulated 
data for PHENIX muon arm using GEANT based 
simulation code PISA [3]. Conventionally, the 
Principal Component Analysis (PCA) method is 
used for pattern recognition and classification of 
true tracks [1,4]. It is found that the PCA method 
works well when the tracking distance is small, 
number of tracking stations are large and the track 
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multiplicity is not too high. In this work, we show 
that the PCA method is not good enough in the 
high multiplicity environment, since many combi- 
nations of the co-ordinates not belonging to the 
true tracks also qualify the PCA test. Next, we 
consider another approach based on Artificial Neu- 
ral Network (ANN) which is recently becoming 
quite popular in many of the classification applica- 
tions [5]. We found that the ANN method based 
on the normal backpropagation algorithm does 
not work well in the present application and it even 
does not converge while learning. To overcome the 
problem of both PCA and ANN, we use a simple 
neural network with preprocessed inputs. It is 
shown that best performance is achieved when the 
input data is preprocessed using the PCA technique 
before it is fed to the backpropagated neural net- 
work. The advantage of this network is that it does 
not have much connections in the hidden layer and 
thus the complexity of error propagation through 
the hidden layer is avoided. In the following, we 
work with the simulation data generated for the 
muon arm of the PHENIX detector, to make 
a comparative study of the above track finding 
algorithms. We have carried out GEANT based 

vertex point- 

simulation for tracking of the muons detected in the 
PHENIX muon arm. The aim of the present study 
is to demonstrate how a simple neural network can 
be used with preprocessed inputs obtained from 
PCA as a classifier, particularly in a situation where 
the track multiplicity is quite high. 

2. Simulated test data 

Fig. 1 shows a schematic drawing of the 
PHENIX muon north arm. Particles emerging 
from the collision point or vertex point pass 
through the pole tip of the central magnet (CM) 
and enter the muon arm. The muon arm mo- 
mentum measurement uses the radial magnetic 
field produced by the muon magnets (MM) having 
a central piston and flux return plates which re- 
semble a “lamp shade” geometry. Charged particles 
entering the muon arm are tracked by multi-layer 
tracking chambers arranged in three stations 
located at distances of 1.8, 3 and 6 m from the 
vertex position. Downstream of the MM, muons 
are distinguished from pions and other shower 
products by means of muon identifier detectors, 

station 2 

station 3 

Fig. 1. Schematic diagram of PHENIX muon north arm. 
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consisting of concrete absorber walls interleaved 
with planes of limited streamer tubes. The first 
tracking station is out side the magnetic field 
whereas the middle and the last one lie inside the 
magnet lamp shade. The muon arm is designed 
to give an acceptance for particles decaying into 
lepton pairs emitted in the rapidity range of 
y = 1.2-2.4. In the high energy limit, the rapidity 
y is related to the polar angle 0 by 
y = - ln(tan O/2). The above rapidity range corres- 
ponds to the polar angles of 10” d 8 < 35”. The 
muon detectors have nearly full azimuthal angle 
coverage. The muon tracking detectors are made of 
cathode strip chambers having three planes in cath- 
ode-anode-cathode configuration. Each tracking 
station consists of three layers of cathode strip 
chambers, each of which provides information on 
the x and y co-ordinates of the particle track. More 
details on the design of the detectors are given in 
the Conceptual Design Report of the PHENIX 
detector [l]. The PHENIX detector has been 
modelled using GEANT based packages. We gen- 
erate the test data for PHENIX muon tracking 
stations using PISA (PHENIX INTEGRATED 
SOFTWARE ANALYSIS) simulation software 
with realistic active and passive detector volumes 
and also with magnetic field on. PISA is a GEANT 
based simulation code [3] which gives raw detector 
hits; in this case the x, y and z co-ordinates at each 
layer of the tracking station. We used an in built 
Jill/ generator that produces J/$‘s which decay into 
a pair of muons. Fig. 2a shows a typical spectrum 
of the momentum distribution of the muons ob- 
tained from PISA simulation at layer one, i.e. just 
before station 1 for all those muons which enter the 
muon arms and penetrate all through up to the 
station 3, while Fig. 2b shows the rapidity distribu- 
tion of the muons. In the first choice, we take only 
those muon pairs which penetrate all the three 
tracking stations. Although, we have chosen muon 
pairs to start with, the following analysis will also 
be applicable to pion tracks that penetrate all the 
three tracking stations. To see how the method 
works, we have considered this simple case which 
will be generalized to more complex situations later 
on. While passing through the three layers of 
a tracking station, a single track will create nine 
space points and there will be a total 27 of space 
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Fig. 2. (a) Momentum distribution of muons before station 1. 

(b) Rapidity distribution of muons that enter the PHENIX 

muon arm. 

co-ordinates while passing through all three sta- 
tions. Since z positions are fixed, we are left with 18 
(0,4) or (x, y) co-ordinates. 

3. Principal component analysis 

The principal component analysis which is also 
called a “canonical transformation” method does 
a simple co-ordinate transformation to principal 
axes such that the variances of the new co-ordinates 
are equal to the eigenvalues of the co-variance 
matrix, which is generated out of a large sample 
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space [4]. Let us assume that a single track is 
characterized by a M-dimensional hit vector 
h = (h1,h2, . . . ,h,J whose average (Hi) and 
covariance (Aij) are 

A,j = 4 i C(hi)n - JfilC(hj)n - Hj12 
n-l 

where N is the number of hit vectors of the (N x M) 
dimensional sample space. Consider the following 
linear transformation: 

Xj = : oijhi. 
i=l 

It can be proved [4] that the variances of X are the 
eigenvalues a of the dispersion matrix A, when 
COij represents the eigenvectors of A. Hence, 

=E 5 CDij(hi-Hi) 

[ 1 
2 

= E(yf) = /zj, (4) 
i=l 

where E stands for average over N and rlj is 
given by 

qj = E wij(hi -Hi). 
i=l 

Therefore, the PCA is tuned with a training data 
set in order to calculate the average and the disper- 
sion matrices H and A, respectively. The experi- 
ment records a set of (0,4) pair from each layer 
when a charged particle enters the tracking station. 
Since track multiplicities are high, it is not possible 
to know which are the pair of co-ordinates from 
each layer that constitute a true track. Therefore, 
we consider all possible combinations C = (C,, 
c 2, . . . . C,) where C1 ,..., CM are the co-ordinates 
drawn randomly (but pairwise) from each layer. 
More details of how the combination vector is 
formed is given in Section 4. To examine if the 
combination C constitutes a true track, the following 

generalized distance is calculated: 

yj = ~ Wij(Ci - Hi), (6) 
i=l 

1 M rj” 
d=jyj,C 12_ (7) 

J-1 J 

It is now required that for a track candidate, d is 
less than some maximum value d,,,. From the 
previous discussions we know that E(qf) = nj and 

E(qj) = 0. Hence, qj/J;li will be distributed nor- 
mally with unit standard deviation. In other words, 

if we chose qj/J/zj < 3, i.e. d,,, < 9, it means three 
standard deviations away from the mean which will 
occur only in 99.85% of the cases. 

4. PCA results 

As mentioned before, the PHENIX muon arm 
consists of three tracking stations, each having 
three layers. Therefore, a single track which reaches 
up to the third station will have nine pairs of 8 and 
4 co-ordinates, i.e., in a total of 18 space co-ordina- 
tes. Since the measurements of the co-ordinates are 
independently done at each station, one needs to 
take all possible combinations of these co-ordinates 
and calculate the generalized distance “d” for them. 
If the track multiplicity at station 1 is N, this results 
in Ng combinations. This needs enormous comput- 
ing time, particularly when N is quite large. An 
alternate approach is to find out the track segments 
within each station and finally to make a global 
search to join all the track segments. This proced- 
ure will result in 3 x N3 combinations. The finding 
of track segment proceeds according to the follow- 
ing scheme. First, we search for the tracks in 
a single tracking station (M = 6) and finally we 
make a global search (M = 18) to join the track 
segments. We follow this approach to reduce the 
computing time. We use a training data set with 
116 hit vectors h, generated from PISA simulation. 
The test data set with different random combina- 
tions C is generated for different multiplicities 
N out of this training data set. Using the training 
set, the Oij and 1, were calculated for each station as 
well as for the global search. Fig. 3 shows a typical 
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Fig. 3. The normalized distance “d” distribution for tracking 

station 1. 

example of the “d” distribution for station 1 when 
same data set is used for both training and testing 
for a track multiplicity of N = 100. If one uses 
d,,, around 16 (within 40) for the test data, all the 
true tracks will be accepted with 100% efficiency. 
Similar behavior is also found for stations 2 and 3. 
It is important to note here that if there is any 
combination of the vector C which is not a true 

track, but its “d” value is less then d,,,, it will also 
add to the true track counting. However, this does 
not happen within a tracking station. Table 1 sum- 
marizes the results for track recovery at all the three 
stations at various d,,, values. The first column 
shows d,,, values, whereas the second column 
shows the track multiplicities at each station. The 
third, fourth and fifth columns show the total num- 
ber of tracks recovered at each station, i.e., the total 
number of tracks at each station for which d d d,,,. 
It is interesting to see that within each station, all 
the tracks for which d < d,,, are true tracks and 
there is no false contribution as shown in the last 
column. As seen from the table, for d,,, E 12, the 
true track recovery efficiency reaches up to 100% 
for all stations. It is also seen that when track 
multiplicity is less, even at a d,,, of 4 or 9 (within 20 
or 3a) is good enough for nearly 100% recovery. 

Next, we join these track segments doing a global 
search. Fig. 4 shows the “d” distribution of the true 
tracks for global tracking. In this case the value of 
d can reach as large as 60. In order to have 100% 
track construction efficiency, one must use 
d max < 60. However, in case of global tracking, an 
additional problem arises due to presence of many 
false tracks. There are many false combinations for 
which d < d,,, and this happens at all d,,, values, 

Table 1 

PCA performance in station nos. 1, 2 and 3 

d max Multiplicity Station no. 1 Station no. 2 Station no. 3 False tracks 

Tracks recovered Tracks recovered Tracks recovered 

3.0 100 91 96 91 0 
3.0 75 68 72 13 0 
3.0 50 46 48 49 0 
3.0 25 23 24 24 0 
4.0 100 94 96 98 0 
4.0 15 70 72 74 0 
4.0 50 48 48 49 0 
4.0 25 24 24 24 0 
5.0 100 94 97 100 0 
5.0 75 70 73 75 0 
5.0 50 48 49 50 0 
5.0 25 24 24 25 0 

12.0 100 100 100 100 0 
12.0 75 15 15 75 0 
12.0 50 50 50 50 0 
12.0 25 25 25 25 0 
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Fig. 4. The normalized distance “d” distribution for global 
tracking. 

although the problem is more serious at higher The contribution from false tracks might get 
d,,, values as well as for higher track multiplicities. reduced if the number of tracking stations is in- 
Fig. 5 shows the percentage of accepted true and creased further. To see how the number of layers 
false tracks as a function of track multiplicity at two per tracking station affects the pattern recognition 
different d,,, values. Table 2 gives the results on efficiency, we have removed one layer from each 
the number of true and false tracks at multiplicity station. This configuration will result in 12 (6J,4) 
N = 100 for different d,,, values. This shows that co-ordinates for a track that goes all through. The 
for N = 100, if one wants 100% true track efficien- results are also shown in Table 2. It is interesting to 
cy, one needs to use a d,,, M 50, which will also note that whether it is 18 or 12 co-ordinates, the 
result in a large number of false tracks. Although performance does not differ significantly (see 
this problem is less serious at low multiplicities, still Table 2 for 18 and 12 co-ordinates). In the present 
it will result in lots of spurious tracks depending on case, we have considered only the muon tracks. It 
the d,,, value. will be also of interest to see what will happen if we 
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Fig. 5. The percentage of accepted tracks versus multiplicity for 

two different d,,, values obtained from PCA method. 

Table 2 

Global search for three tracking stations with 18 co-ordinates,12 co-ordinates and 6 co-ordinates, Multiplicity N = 100. 

d max 18 co-ordinates 

True False Total 

12 co-ordinates 

True False Total 

6 co-ordinates 

True False Total 

2.0 86 4 90 
3.0 88 12 100 
4.0 91 19 110 

6.0 94 21 115 
8.0 95 39 134 
10.0 96 60 156 
15.0 96 100 196 
20.0 97 133 230 
30.0 98 228 326 

50.0 99 393 492 

87 6 
91 15 
92 20 
95 28 

- - 

95 64 
96 100 
97 137 
99 227 

100 395 

93 93 1049 1142 
106 
112 97 2441 2538 

123 99 3926 4025 
- 100 5381 5481 
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do tracking with pions as it may give additional 
tracks in between due to decays. The last three 
columns of Table 2 show the performance with 
only one layer per tracking station which results in 
total six co-ordinates for a single track. In this case 
the tracking efficiency is very poor as the number of 
false tracks increases drastically. 

5. Artificial neural NET (ANN) 

The neural network takes a different approach. 
Consider a three layer network as shown in Fig. 6, 
where the output units are denoted by Oi, hidden 
units by Vj and input units by &. There are connec- 
tions w;j from the inputs to the hidden units and 
Wij from the hidden units to the output units. 
Different patterns are labelled by the superscript p, 
so input k is set to 5p when pattern ,u is being 
presented. Given pattern ,u, hidden unit j receives 
a net input 

k 

and produces an output 

. 

Output unit i thus receives 

(9) 

hf = C WijVf = C Wijg 
j j 

and produces for the final output 

Of = g(&) = 9 C WijVT 
(j > (j (k 

= 9 C Wi$l C wjk& 
1)' 

(11) 

OUrPUT LAYER 

q HIDDEN LAYER 

INPUT LAYER 

Fig. 6. A schematic diagram of a three layered neural network. 

The net output 0; for the pattern ~1 usually 
differs from the desired output d!. In the standard 
ANN model with back propagation algorithm [S], 
one tries to minimize the mean square error de- 
fined as 

E = ;x [df - Of]". 
w 

(12) 

The aim is to adjust the free parameters of the 
network mij and Wij in such a way that the error 
function is minimum. Several methods have been 
proposed to speed up the training of the back 
propagation algorithm [6,7]. In this work, we 
find the ANN based on RPROP algorithm [6] is 
much faster than the one based on simple back- 
propagation. 

6. Application of ANN for pattern recognition 

We consider an ANN with 18 input nodes, 18 
hidden nodes and one output node. The input and 
hidden nodes are kept same as this combination is 
found to give better performance. The output is 
assigned a value of either 0 or 1 depending on 
whether the input vector is a true or a false track. 
For unbiased training of the ANN, we take nearly 
equal number of true and false tracks (113 + 133) 
generated by the PCA method using certain 
d,,, value. We select the input vectors in two differ- 
ent ways. In one case, we take 8 and 4 co-ordinates 
as input vectors, whereas in the second case we use 
PCA transformed co-ordinate dj as input vectors 
where dj is given by 

(13) 

such that Cdj = d. 
Therefore, in the first case, the input vector has 

18 actual 13, 4 co-ordinates whereas in the second 
case, the input vector has 18 transformed dj CO- 
ordinates. The ANN is trained using JETNET-3.4 
[S] in batch mode, i.e., the connection weights are 
updated after each epoch of 246 iterations. Fig. 7 
shows the plot of error function after each epoch of 
246 iterations with both (0,4) and dj co-ordinates. 
It is seen that the learning is very poor with the 
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Fig. 7. The error function versus epoch numbers for two types 

of inputs. See solid curve for 0, 4 and dashed curve for dj- 

(0, 4) choice of inputs (see the solid curve) and the 
ANN does not converge even after 5 000 epochs (up 
to 500 epochs is shown in the figure). We have tried 
error minimization using various methods and also 
adjusted number of nodes in the hidden layer. 
However, the performance does not improve much. 
On the other hand, with the second choice of inputs 
as PCA transformed co-ordinates, the ANN con- 
verges very fast within 100 epochs. After the train- 
ing is over, the weights are frozen and the method is 
applied to the test data. Fig. 8a and Fig. 8b show 
the ANN output distribution (after 5000 and 100 
epochs, respectively, used during training) with two 
choices of inputs. Although the desired outputs are 
0 and 1, the output values are broadly distributed 
between 0 and 1 when (f3,4) are used as inputs. On 
the other hand, with dj as inputs, the learning is not 
only faster, but also the output converges to either 
0 or 1 after 100 epochs as shown in Fig. 8b. It is also 
noticed that even one node in the hidden layer is 
enough to achieve convergence. Therefore, we use 
a neural network with one node in the hidden layer 
with transformed co-ordinates dj both for training 
and testing. We use different sets of test data having 
different number of true and false tracks. The idea 
is to test whether ANN can differentiate between 
true and false tracks which are inherently present 
after PCA test for global tracking as shown in 
Table 2 for N = 100. We apply the ANN to the 
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(a) output 
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=I 75.0 - 
s 
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Fig. 8. (a) The ANN output distribution after 5000 epochs 

when the actual 0, 4 track co-ordinates are fed as net inputs. 

(b) The ANN output distribution after 100 epochs when PCA 

transformed co-ordinates are fed as net inputs. 

PCA output with different number of true and false 
tracks as well as with different multiplicities. The 
ANN results are shown in Figs. 9 and 10 along 
with PCA results for comparison. Fig. 9 shows the 
variation of true and false acceptance with multipli- 
city taking a typical d,,, value of 9 and Fig. 10 
shows the acceptances as a function of d,,, for 
a given multiplicity 100 for both PCA and ANN. It 
can be seen that, although the ANN rejects some of 
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Fig. 10. The percentage of accepted true and false tracks at 

N = 100 as a function of d,,, for global tracking both for PCA 
and ANN. 

the true tracks, the false track contribution is dras- 
tically reduced to almost 1% or 2%. 

The above neural network with one hidden node 
and one output node is quite simple as there is only 
one connection weight ( W1 1) from hidden to outer 
layer. This simple network is quite close to a two 
layer network in implementation as there is not 

much non-linearity from input to output except 
for the transfer functions. Although not shown 
explicitly, convergence can also be obtained even 
without any hidden layer. It may be mentioned 
here that the use of a two layer network is not new. 
Based on this approach a variety of applications 
have been discussed in the literature [9], which 
generally incorporate the idea of functional expan- 
sion of the inputs in a non-linear way. With this 
type of a simple percepton network, instead of 
a multi-layer percepton with many hidden nodes, 
the complexity of propagation of errors across the 
hidden layers is avoided and calculation of one 
point derivative at the output node is all that is 
required. With the PCA transformation (see 
Eq. (7)), the actual input layer of the network now 
acts as the hidden layer whose transformation 
weights are obtained from the principal component 
analysis. Therefore, the PCA transformation al- 
ready implements one level of learning before the 
inputs are fed to the neural net. Further, the pre- 
processing in the present method is quite different 
and new as there is no further expansion on the 
input nodes. PCA does a simple linear co-ordinate 
transformation from one space to another. This 
transformation is also not arbitrary, rather the 
transformation matrix is obtained through PCA 
learning. Therefore, the above neural net with PCA 
transformed inputs incorporates two layers of 
learning; one at the PCA level and other one during 
the net learning. 

7. Conclusions 

The PCA and the ANN techniques have been 
applied for muon track recognition. It is found that 
the PCA method gives best performance when the 
track multiplicity is low. At higher multiplicities, 
the false track contribution increases which be- 
comes quite significant if the number of tracking 
stations is reduced further. In the present analysis, 
whether it is 18 co-ordinates (with three layers 
per tracking station) or 12 co-ordinates (two layers 
per tracking station), the PCA performance does 
not differ much. The ANN method has also been 
applied for pattern recognition. It is found that 
the ANN cannot be trained with actual (6,4) 
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co-ordinates of the true and false tracks. However, 
the ANN learns much faster when the actual (0, 4) 
co-ordinates are transformed to a new set of co- 
ordinates using PCA technique. This combined ap- 
proach based on both PCA and ANN seems to give 
better performance. In fact, it is shown that with 
PCA transformation, even one node at the hidden 
layer is enough for the above application. Since less 
number of connection weights are involved, the 
complexity of the error propagation through the 
hidden layers can be avoided. In the above, the 
analysis has been carried out with the simulated 
data set generated from the PISA simulation code 
for the PHENIX muon tracking detectors. The 
above method is, however, quite general and can be 
applied for pattern recognition, particularly in situ- 
ations when the track multiplicities are quite high 
and the PCA alone cannot eliminate all the false 
tracks. 
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